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ABSTRACT

In this paper we analyze the steady-state bifurcations from the trivial
solution of the reaction-diffusion equations associated to a model chemical
reaction, the so-called Brusselator. The present analysis concentrates
on the case when the first bifurcation is from a double eigenvalue. The
dependence of the bifurcation diagrams on various parameters and perturba-
tions is analyzed. The results of Technical Summary Report #1844 are
invoked to show that further complications in the model would not lead to

new behavior.
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SIGNIFTCANCE AND EXPLANATION

It is believed that pattern formation by biological =v<tem= n.v be
related to repeated bifurcations of the reaction-diffusior «ua: <ns govern-
ing the concentrations of the various chemicals present 1 "L = tem.  The

full complexity that these equations can exhibit is far from understood.
Here we take an initial step in this direction by analyzing the b furcations
of a model chemical reaction, the so-called tri-molecular model o Lefever
and Prigogine, at and near a double eigenvalue. The depenicence af this
system on various parameters and its sensitivity to perturlaticon. 1S also
studied.

This paper differs from earlier work in several points. Firot we apply
the notion of universal unfoldings (developed in MRC Technical Somrary Report
#1844) to show that no qualitatively new behavior would result fror the addi-
tion of further perturbations in the model. Second, we show thar symmetry
plays a dominant role in determining the behavior of the system, a fact that
seems to have escaped notice. Finally we have been able to attain a higher

level of rigor than previous work on double eigenvalues.

The responsibility for the wd}dinq and views expressed in this dr.?riptive
summary lies with MRC, and not with the authors of this report.
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BIFURCATION ANALYSIS NEAR A DOUBLE EIGENVALUE OF A MODEL CHEMICAL REACTION

1 - i 2
bavid G. Schaeffer and Martin A. Golubitsky

In this paper we consider the one-dimensiona! reaction-diffusion equations associated
to the so called tri-molecular medel of Lefever and Prigogine (6], less formally known
as the "Brusselator". For the parameter range in which we are interested, this system
exhibits bifurcation from a spatially and temporally homogeneous solution into steady-
state, spatially inhomogeneous solutions. The first bifurcation may be from either
a simple or a double eigenvalue. A number of authors [1,5) have discussed the case
of a simple eigenvalue, but rather less secems to be known about the non-simple case.
Here we analyze the bifurcations of this system at the double eigenvalues as an application
of the theory developed in [2,3]. We obtain a rather complete classification of the
possible bifurcation diagrams in the vicinity of such points. Some of our results
were obtained earlier by Keener [5a]l by less rigorous methods - his results are compar ed
with ours at the end of §1.

The relevant equations for this model are

. 2
%% wp, LEZ 4 P - (B + )X + &
G0 o 2
dE
(1.1)
oY

subject to boundary conditions of Dirichlet type
(1.2) X(0) = X(m) = A, Y(0) = Y(m) = B/A .
Here the unknown functions X and Y are chemical concentrations, A and B are

constant, externally controlled concentrations, and D_, D

1 , are diffusion coefficients.

B plays the role of the bifurcation parameter; that is, we are interested in the

1Resuan:h sponsored in part by the United States Army under Contract No. DAAG29-75-C-
0024 and the National Science Foundation under Grant MCS77-04148.

2
Research partially supported by the National Science Foundation Grant MCS77-03655 and
the Research Foundation of C.U.N.Y.
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(1.3)
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(1.4)

where
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(1.6)

Both time independent and time periodic solutions of
zero solution of this equation, depending on the various parameters.

is rather larger than Dl'
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we:
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the vector

N(w) =

gives a time independent solution.

Bifurcation of a steady state solution of

operator

(6] &
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in
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notation

S %)y

= A,
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say DZ/DI

(See {1] for proofs.)

(1.2)

X = A,

2
u

is at least 3,

from the trivial solution

Y = B/A

To facilitate the analysis we define incremental variables

v=Y-=-B/A,

(u,v). These variables satisfy the equation

Lw + N(w)
a2 B -1 A2
L ;
3f -B -A
2 ] ¥
+ 2Auv + u'v .
=L

(1.4) can bifurcate from the
However if 02
then the first bifurcation

We consider only this case.

(1.4) can only occur if the linear

To avoid confusion let us say explicitly that L

with homogeneous Dirichlet bouadary conditions.

Since L

2
commutes with (9/3f) , the eigenfunctions of L may be sought in the form

(1.7)

where a,

b

are constants and 4

a

sin 14§

is an integer.

b

associated

The two eigenvalues of L

to eigenfunctions of the form (1.7) are eigenvalues of the matrix

(1.8)

Zero is an eigenvalue of

B -

(1.8) if

2 2
-2
D1 A
2 2 y
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and only if B = B[, where
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(1.9) B, =1 #=—RA +D 2" <. = .

Thus the first bifurcation point of (1.4) is given by

(1.10) min B, .
¥

For most values of the parameters in the problem this minimum wiil be achieved for
exactly one value of ¢, and then the first bifurcation will be from a simplc < 1gen-
value. However if

(1.11) ﬁ2 = DlDzkz(k + 1)2

for some integer k, then the minimum in (1.10) is achieved at both ¢ = k and

£ =k + 1, and the eigenvalue is double. In other words, when the zero solution of
(1.4) first loses stability, it loses stability simultaneously with respect to
disturbances of wave number k and of wave number k + 1. This is the case we study
in the present paper.

Our task of analyzing the bifurcations of ()l.)), (1.2) near a double eigenvalue
may be conveniently divided into two steps. It turns out that (in non-degenerate
cases) either one or three new solutions bifurcate from the trivial solution at a
double eigenvalue, and various combinations of stability or instability for the new
solutions are possible. 1In all there are five different cases. Our first problem is
to determine which case occurs as a function of the parameters A, Dl' DZ' (Only two
of these are really independent, as the requirement that a double eigenvalue occur
leads to the condition (1.11).) The second step inthe analysis is to study the effect
of various perturbations on the bifurcation. There are two natural perturbations to

consider in this connection. One is to change A, D ., D, from unperturbed values

) Ul

which satisfy (1.11) exactly to perturbed values which satisfy (1.11) only approximatelv.

Observe that, no matter what the values of these parameters, (1.3) still provides a
spatially and temporally homogeneous solution of (1.1), (1.2). The effect of this

perturbation is to split the double eigenvalue, so that two separate bifurcations from




the trivial solution occur, both at simple eigenvalues. This perturbation induces
secondary bifurcation away from the trivial sclution. The other perturbation we

consider is to replace the parameter A in (l.1) by the function

cosh/E (€ - %)

(1.12) A(E) = A = ’
coshve 2

which is motivated by the following consideraticns. In the derivation of (1.1) it is
assumed that A measures a chemical concentration which is fixed by the experimenter.
In practice concentrations can only be fixed at the boundary of the domain; in the

interior the concentrations will be determined by solving a boundary problem

~——=~-¢A =0 on (0,m
A(0) = A(m) = AO ’

which has solution (1.12). Here ¢ measures the rate at which A 1is depleted relative
to its diffusivity. When e = 0, (1.12) reduces to the previous case, but when ¢ > 0
an explicit, trivial solution of (1.1) analogous to (1.3) is no longer available.
Indeed, as a result of this perturbation there may exist a range of B where (1.1) has
no steady state solutions, spatially homogeneous or otherwise, at least not in the
neighborhood of (1.3). The effect of this perturbation is similar to the effect of
imperfections on bifurcation at a simple eigenvalue. (See for example ([2,9].)

There is an important symmetry present in (1.4) that restricts considerably the
possible behavior in this problem. Namely (1.4) commutes with the reflection
(1.13) RW(E) = w(m ~ &) .
In other words, no change in (1.4) occurs if one makes a coordinate transformation
E' = m - £ which interchanges right and left endpoints of the interval. Observe that

R sin LE = (-1)Eﬂ sin LF .

Thus one of the two eigenfunctions of L at the double eigenvalue is even and one is

odd. The two perturbations of the problem mentioned above also commute with (1.13).

oy




We study the equilibrium equation associated to (1.4), namely
(1.14) Lw + N(w) =0 ,
by means of the Lyapunov-Schmidt reduction. (See §4 for details.) At a double eigen-
value this procedure reduces (1.14) to a system of two equations in two unknowns,
depending on a parameter. Let us write the reduced equations
(1.15) G(x,A) =0

where G : R2 x R + Rz. Here x = (x,y) parametrizes the kernel of L and

A =B - BO, where BO is the bifurcation point. Our notation in (1.15) does not

indicate explicitly the other parameters in the problem. We will show below that at a

double eigenvalue the reduced equations may be written

2 2

X +ny + Ax
(1.16) G(x,A) = '
cxy + )y
where c € R and n = t1l. (This equation holds o cubic terms, and in non-
degenerate cases the cubic terms may be transformed ~hange of coordinates.)
The symmetry of (1.14) with respect to the transformation is reflected in the

fact that the first component of (1.16) is even with respect to y while the second
is odd. Thus the bifurcation diagram

(1.17) {(x,2) € R? « R: G(x,0) = 0)

is invariant under the reflection y » -y.

The first step in our analysis is to compute the coefficients ¢ and n in (1.16)
as functions of the various parameters in the problem. It is then a simple matter to
determine the type of the bifurcation diagram by invoking the classification results
of [3]. (Strictly speaking to obtain the stability properties of the bifurcating solu-
tions the arguments of (3] must be supplemented, which is done in §56 and 7 of the
present paper.) This solves our first problem, that of describing the bifurcation
diagrams at the double eigenvalue proper. For the perturbed problems we again refer
to [3]), this time for a result that an arbitrary small, symmetry preserving perturbation

of (1.16) may be described, up to a certain equivalence, by two parameters. In more

-




technical language, an appropriate universal unfolding of (1.16) requires two parameters.
(S5ee 53 for greater detail.) The fact that two parameters suffice depends strongly
on the presence of the symmetry (1.13) - without this, five parameters would be
required [2]. The two parameters of the universal unfolding may be identified with the
two perturbations of the physical problem discussed above. The fact that two parameters
suffice for the unfolding means that additional perturbations of (1.4) - one might
for example treat B as a variable concentration, partially depleted in the interior,
or one might consider boundary conditions other than (1.2) - would not lead to more
complicated behavior than that already obtainable with the two perturbations considered.
This paper has much in common with Keener [5a), a reference kindly brought to our
attention by W. H. Ray. We feel that our paper sheds new light on the subject on
several accounts, quite apart from questions of rigor. Perhaps most important, the
existence of a universal unfolding with a known, finite number of unfolding parameters
ensures that the sort of parameter exploration undertaken in these papers is a terminat-
ing process - although new complications may be introduced into the model indefinitely,
no qualitatively new behavior will resulit after the parameters of the universal unfold-
ing are represented. Secondly, the present paper emphasizes the importance of symmetry ¢
in this problem, without which a number of qualitatively new phenomena could occur.
For example the occurrence of secondary bifurcation depends on symmetry. Consider a
perturbation of the reduced equation (1.16) of the form
(1.17a) G(x,A) + Mx ,
where M 15 a 2 * 2 matrix. Such perturbations do not affect the existence of the
trivial solution x 0 but (in general) do split the double eigenvalue. It can be
shown that if, say ¢ 0O and n = +1, then secondary bifurcation occurs for the
perturbed problem if and only if M is upper triangular (non-zero diagonal entries
permitted). Here bifurcation means the crossing of solution branches, not merely the
existence of a limit point. The first perturbation discussed above, namely moving
By B » n‘) slightly away from values satisfying (1.11), may be represented in the form

1

(1.17a), where however the fact that the perturbation preserves symmetry implies that ¢




M 18 diagonal. In particular M is upper triangqular, so secondar
occecur. Of course for a symmetry breaking perturbation no sucl
expected. A final difference between [5al and the present paper 15 tnast ws

the two distinct perturbations - Keener does not consider (1.12) From our

view it is natural to try to find physical representations for both of the unfolding

CeS

parameters in the universal unfolding, not to mention the considerable physical nrerest
ef (1.13).
The following notation will be used throughout this paper. Let 6 = D_/0 ind

N

let A =6 “A. Equation (1.11) may be re-written

(1.18) A = ki(k + 1)D ,

where D without a subscript indicates D.. In Figure 1.1 the lines labeled (%k,k + 1)

1

indicates the lines in the (;,D) plane where (1.18) is satisfied. Betwee

(k - 1,k) and (k,k + 1) the first eigenvalue is simple and the associated

funcrtion has spatial dependence sin kf. If (1.18) is satisfied, the first
occurs when

(1.19) B = (1 + Dpl)(l - Duz) v

wher« g, = kz and by = (k + l)z.

=, .

e lines

sifurcation
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2. GStatement of results

In this section we present our main results, deferring the proofs for later sections.
Illustrations of the bifurcation diagrams, as defined by (1.17), offer the most
convenient format for this presentation. Some comments about Figures 2.2-4 below may
help in their interpretation. These fiqures are intended tc represent three dimensional
bifurcation diagrams, the three coordinates being ), the bifurcation parameter; x,
the amplitude of the eigenfunction whose profile is symmetric with respect to (1.13);
and y, the amplitude of the anti-symmetric eigenfunction. The orientation of these
coordinates shown in Figure 2.2 is retained throughout. The "Y" or diamond shaped
figqure at the ends of some of these bifurcation diagrams is intended as an aid to
visualizaticn and does not represent part of the diagram itself. In Figure 2.2 we have
shown the bifurcation diagrams of the unperturbed problem as a union of straight lines
through the origin. Here "T" denotes the trivial solution, which coincides with the
s-axis. The branches labeled T and 1 span the plane of symmetry f{y = 0}, while
branches 2 and 3, when present, are located symmetrically in a plane {cx + » = 0}
perpendicular to the plane of symmetry. (Cf (1.16).) In the perturbed diagrams,
Figures 2.3 and 2.4, we have labeled the solution branches far away from the bifurcation
polnt by the closest solution branch of the unperturbed problem. 1In all cases the
perturbed diagram consists of two conic sections, the branches T and 1 1lying in
the plane {y = 0}, the other branches lying symmetrically in a plane {cx + A = const}.

In our bifurcation diagrams the various solution branches have stability assign-
ments determined by the spectrum of the linearized equation. We claim that at most
two eigenvalues of the linearized equations lie in the unstable (right) half plane -
this follows by perturbation theory from the observation that the unperturbed problem
has a double eigenvalue at zero and the remainder of its spectrum lies in a half plane
¢ : RO < -¢} , where ¢ > 0. 1In the figures we indicate the three cases of zero,
one, or two eigenvalues in the right half plane by labels +s, - , +u, respectively.
Here the sign gives the Leray-Schander degree while the latter distinguishes between

the stable and unstable cases with positive degree.

_9_




We should caution the reader that our representation of the bifurcation diagrams
is purely local. Tt is known [(l] that for sufficiently small A the solution of
(1.4) is unique and that for A bounded the solutions satisfy an a priori estimate.
Thus the bifurcating solutions must turn around in the large, as indicated in Figure 2.5
for the unperturbed case I, (notation defined below).

First we consider the unperturbed case when (1.18) is satisfied exactly. As
mentioned above, either one or three non-trivial solutions of (1.4) may bifurcate from
the trivial soluticn at the double eigenvalue. If one new solution bifurcates, it
may be either unstable or stable, while if three such bifurcate, either zero, one, or

two of them may be stable. We refer to these cases as I _, I

0 ITT ;5 TIL., TII

i 0 1 2
respectively - the Roman numeral indicates the number of bifurcating solutions and
the subscript the number of them which are stable. It turns out that which case occurs
depends on A and D but not on 6. The type of the bifurcation as a function of
these two parameters may be determined from Figure 2.1, where we have identified two
sets of five regions in the A, D plane in which different behavior obtains. The
two different partitions correspond to k odd or even. Equations for the boundaries
of these regions are given in 84. We have sketched in Figure 2.2 bifurcation diagrams
for each of the five cases. (In this paper we do not consider the degenerate cases
[ when (A,D) lies on the boundary between two regions in Figure 2.1.)
We now consider the effects of changing the parameters A and D, the first of
our two perturbations. (As above the bifurcation diagram does not depend on 6.) If
(A,D) varies along one of the lines (k,k + 1) in Figure 2.1, no qualitative change
in the bifurcation diagram will occur unless (E,D) crosses into a different region. s
(This is of course a local statement - the size of the neighborhood in which it is valid
decreases as the boundary is approached.) Thus only one of these parameters has a
qualitative effect on the nature of the bifurcation diagram. Let us take §, the
change in D. Making & non-zero splits the double eigenvalue into two simple eigen- ¢

values, causing secondary bifurcation. We illustrate the effect of this perturbation

-10- [ '_ *
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Figure 2.2e: Unperturbed III2

for the five cases above in Figure 2.3. The diagram depends on the sign of § and the
parity of k as indicated. Note that the A-axis, representing the trivial solution,

is a part of all these diagrams. Of course the effect of the perturbation is strongest
near the center of the diagram - although the perturbation is uniformly small through-

out the interval, the unperturbed problem is rather singular near the double eigenvalue
proper and hence more sensitive to perturbations. Perhaps the most noteworthy feature of
these diagrams occurs in Figure 2.3b1. (Let us remark that the circle in this diagram lies
in a plane perpendicular to the two lines. Similarly for Figure 2.3a.) The solution
branch that originates from the first bifurcation exists only for a small interval

above the bifurcation point befcre it is reabsorbed by a secondary bifurcation. A

similar phenomenon occurs in Figure 2.3e It is also worth remarking that the first

e
bifurcation can be either super-~, trans-, or sub-critical.

As to the second perturbation, we have sketched in Figure 2.4 the bifurcation
diagrams which result from taking ¢ > 0 in (1.12). The outcome depends on the region
and on the parity of k 1in a somewhat confusing manner. For example, the unperturbed
diagrams when (A,D) belongs to region 1 or 5, k odd or even, are all the same,

pamely 1111; above if & # 0 the perturbed diagram depends on the parity of k but not

the region, while here if ¢ > 0 the diagram depends on the region but not the parity of k.
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Figure 2.3d1

Figure 2.3d
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Figure 2.3e
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Negative values of ¢ would lack physical significance. As it happens, however,
for the various unperturbed diagrams of type 111, the diagram which would result if
£ < 0 occur anyway for (;,D) in a different region and k of the opposite parity.
This duplication does not occur for the cases 10 or Il. We have none the less
included the diagrams for e < 0 with the label "unphysical", since these diagrams
could well appear if the perturbation were caused by some other mechanism without a
definite sign, as for example imposing boundary conditions slightly different from (1.2).
We do not analyze such possibilities here, but only mention that no matter how complicated
the perturbing mechanism (assumed symmetric), the diagram which results is determined
qualitatively by the values of the two parameters in the universal unfolding of (1.16).
(See [2] concerning non-symmetric perturbations.) This consideration gives the diagrams
here a greater significance than otherwise apparent.

By far the most interesting of these diagrams is that of Figure 2.4e (We caution

1°
the reader not to try to imagine a surface spanned by solution branches 1 and 2 or 1
and 3 - rather think of 2 and 3 as lying in a plane cx + ) = 0.) Here the two non-
trivial soclution branches of positive degree change from unstable to stable as ) is
increased, without ever encountering a zero eigenvalue - in other words, they undergo
a Hopf bifurcation! As mentioned above a Hopf bifurcation can sometimes occur from the
trivial solution in the unperturbed problem, but only at much larger values of B;
indeed the Hopf bifurcation of Figure 2.4e1 can occur for parameter values where the
unperturbed problem does not admit any Hopf bifurcations. Because the eigenvalues
must be close to zero, the period of the associated limit cycles will be large,
specifically 0(5_1/2). In a subsequent publication we will consider the stability and
the domain of existence of these limit cycles.

Fipnally, let us suppose that both 6 and ¢ are non-zero. Then there exist six
regions of the 4, ¢ plane where the perturbed diagrams exhibit different structure,
as indicated in Figure 2.6 for the case TIIO. Note that regions 1, 2, 4, and 5 in

the figure only contain points (6,c) for which ¢ = 0(62). We feel that regions 3 and 6

-20- '
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Figure 2.4bl: Il. unphysical

?iqure 2.4b2: Il, e>0
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Figure 2.4cl

Figure 2.4c
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IIIO,

IIIO,
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Figure 2.4dl: IIIl, e > 0, region 5, k odd or even

Figure 2.4d2: IIIl, € > 0, regionl, k odd or even
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Figure 2.5: Behavior in the large

must be regarded as the generic cases, since points (8,e) whose components are of the
same order will belong to these regions. The diagrams corresponding to regions 3 and

6 are those illustrated in Figures 2.4c. and 2.4c2, respectively; the diagrams correspons-

1
ing to the four thin regions are required to effect the transition between regions 3
and 6. It is quite possible to imagine situations where these transition diagrams are

relevant, but we suspect that their detailed structure is too specialized for the model

at hand. We refer the interested reader to [3] for a more complete discussion.

€

Figure 2.6
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§3. Review of the classification results of [ ]

In the next section we will apply the Lyapunov-Schmidt reduction to the equilibrium
equation (1.14) and will obtain a system of the form
i [
a x2 + a2y2 "’ ble =0

(3.1) .
a xy + bsz w0 5

at least modulo cubic terms. These equations represent the most general reduced equa-
tions at a double eigenvalue for a system governed by a quadratic non-linearity and

possessing the symmetry

(3.2) JG(Ix.A) = G(x,\) ,

where J is the matrix

In this section we recall some of the definitions and results of [3] concerning the
classification of such problems.
2 2 : i ¢
Let G,H: R XR + R be two reduced bifurcation problems, defined near the

origin. We shall call G and H contact equivalent if there exists an invertible,

2 ¥ 2 matrix-valued function Tx N and a diffeomorphism on RZ x R of the form
’
(x,A) » (p(x,2),A())) such that

(3.3) H(x,\) = T G(p(x,2) ,A(X))

We are primarily interested in bifurcation diagrams such as (1.17), and it is clear

that the bifurcation diagram of G is not changed at all by multiplication by an
invertible matrix. The diffeomorphism (p,A) represents only an inessential change

of coordinates in the problem, which will not change the qualitative nature of the
bifurcation diagram. These remarks are intended to motivate our definition. (In
general transformations such as (3.3) can change the stability assignments of the various
solution branches in a bifurcation diagram. However the degree of a solution branch

is well defined since we require that T and dp, the differential of p, have

XA
positive determinants. We ignore the stability issue for the time being, returning to

it in §7.)
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The above definition neglects the symmetry of (3.1). The appropriate coordinate

transformations (0,A) which preserve symmetry must satisfy (3.2) and the matrices

1 must satisfy
xA

)
(3.4)

(In practice (3.4) simply means that the diagonal entries of 1 are even functions

of y:; the off diagonal entries, odd.) We shall call two problems G and H

equivariantly contact equivalent if (3.3) is satisfied and all functions have the

appropriate symmetry. Usually we abbreviate this phrase to equivalen

It is shown in [3] that the classification of problems of the form (3.1), up to

equivalence, depends only on

(3.5) c = ~~5-3- and n = siqn(alaz) .

In other words (3.1) is equivalent to (1.16), wherc ¢ and n are given by (3.5).

The type of the bifurcation diagram as a function of the parameters c¢ and n 1s given
in Figure 3.1. Strictly speaking any two problems of the form (1.16) with different

e <0 0<ec < 3 (i
fl<= L 10 IO IIIl—ﬂ
n“=‘ ) YIIO III2 —.‘Il
Figure 3.1

values of ¢ are inequivalent, but in practice the qualitative features of the bifurca-

. s
tion diagram are unchanged if c remains within one of the intervals of Figure 3.1.

Moreover, provided ¢ avoids the boundaries of these intervals, the higher order terms

that were neglected in writing (3.1) may in fact be transformed away by an auspicious

choice of 1, p, A.

Reference [3] also considers perturbations of (3.1), in terms of the following specific

definition. By an unfolding of a bifurcation problem G : R2 xR + R2 we mean a
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2 7, 2 : '
smooth map F : R ~ Rx R » R such that F(x,A,0) = G(x,)). The J variables in

the third argument of F will be called unfolding parameters. We show in [3] that

X2+ny2+)x+u

(3.6) F(x,2,a,8,v) =
(c + y)xy + (A + B)y
is a universal unfolding of (1.16) relative to equivalence, assuming ¢ # 0,1. This

means 1n particular that given an unfolding of (1.16) of the form F(-,-,e) =G + ¢H,

there exist smooth functions a(¢), B(e), y(e), defined for small ¢, such that
u” t +H is equivalent to F(-,-,a(e),B(e),y(e)). See [3] for a more thorough discussion
of these issues.

The reader will note that our universal unfolding (3.6) contains three unfolding
parameters, while we indicated above that two parameters suffice to describe perturba-
tions of (1.16). The explanation of this discrepancy is as follows. The parameter c
determines the overall character of the bifurcation, but, as noted above, once it is
restricted to one of the intervals in Figure 3.1, small changes in this parameter do
not affect the qualitative nature of the bifurcation. Thus we regard Yy as an
inessential parameter for our present purposes.

The following table indicates the correspondence between the notation of the present

paper and that of (3] in naming the various cases which arise.

Prese tati I 111 I1I
resent notation I0 1 IIIo 1
Notation of [3) 2h 2e 4e0 4h de

Figure 3.2




54. The Lyapunov-Schmidt reduction for the unperturbed case

Let us begin our discussion with some comments about the interpretation of (1.4)
and 1ts associated equilibrium equation (1.14). We consider (1.4) as an evolution
- . 0 2 s
equation on the Banach space X = C ([0,7],R"). We could of course regard L as an

unbounded linear operator on X with domain

D= {we C2((0,ﬂ],m2) : w(0) = w(m) = 0} ,
but we prefer to regard L as a bounded linear operator L : D » X, where [ has
the C2 topology. Moreover N, considered as a map from 02 into X, is Cm
Frechet differentiable - indeed N is already smooth considered as a map from X into
itself. Thus the right hand side of (1.4), namely L + N, defines a Cm mapping
% : D » X. Note that (d@)0 = [, which is a Fredholm operator of index zero.
| Let Xo = ker L and Xl = range L. We shall assume below that X admits the

decomposition

= ] .
(4.1) X XO )(l

This means that all the generalized eigenfunctions of [ associated to the eigenvalue
zero already belong to ker L; in other words, ker L2 = ker L. We also suppose that

the spectrum of [ restricted to Xl is properly contained in the stable half plane, say

(4.2) o(lel) C {g : Reg < -¢}
where ¢ > 0. Since XO C D, it follows that 0D = XO @ Dl' where Dl =DnN Xl- Also,
L s DL » Xl is a linear isomorphism between the two Banach spaces. Let EO’ El be

the projections associated to the decomposition (4.1).
} In the Lyapunov-Schmidt reduction one eliminates all but a finite number of
components of w in (1.14) by inverting the non-singular part of L. Specifically

|
»
h define a mapping W : XO % Dl implicitly by
|

(4.3) EIO(x + W(x)) =0

for x € XO. It follows from the implicit function theorem that (4.3) is soluble in

some neighborhood of zero. Let G : X_ =+ X be defined by

0 0
¥ (4.4) G(x) = Ego(x + W(x)) .
-30-
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Then x + W(x) 1is a solution of (1.14) if and only if G(x) }, and ev
of (1.14) has this form.
For computations it is convenient to have a reformulation using
the Lyapunov-5chmidt reduction, carrying explicitly the bifurcation r ame
" " N 2
Wy Wy T be a basis for l“. If we parametrize X_ by R via the map «
4 J

then we may rewrite (4.3) as

(4.5) LW(x,A) + ElH(xwl + Y., + Wiz, 1)) 0
* * * >
Let wl, W, be a basis for ker LL , where L is the adjoint of
*
(4.6) (w,,w,) = ab,
T | ij

for some positive constant a. (Here and below (+,-) denotes tie p oduct

Then, in terms of the coordinates on X ahove, Lf) has the representat

0
(w4, (w0
-7 f W = e, lw o,
(4.7) br)w ( Wk W, wW )
Thus equation (4.4), defining the reduced mapping G : R « R +» R°, may be rewritte

in components as

*
(4.8) G.(x,A) =(w, ,b(xw. + yw_ + W(x,2))) ,
1= i 1 2 -
where i = 1,2. We shall always take v, to be even with respect to (1.13) and w,
* *
odd; wl and v, inherit the corresponding parities by (4.6).

We may perhaps avoid confusion if we introduce notation to indicate the dependence
on B that is implicit in L. Let us write L = I’O + MM, where ,',,) is given by

(1.5), with B fixed at the bifurcation point, and
(4.9) Mw = u . p

* &
Using the fact that Lowl, = 0 we may rewrite (4.8) as
*
(4.10) G,(x,2) ={w, ,(0M + N) (xw, + yw  + W(x,2)))
-i'= i 1 2 -

We now start the computation of the coefficients in (3.1) as functions of the
2
various parameters in our problem. In the following lemma d N denotes the second

Frechet derivative of N, a bilinear mapping X x X » X. §
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Lemma 4.1: The second order derivatives of the reduced map G  at the origin are

given by

proof: It follows by differentiation of (4.10) that (when A = 0)

. W W *
(4.11) et AT, S, g et (g Al
i J dxj 2 dxy 1

However dN is zero at the origin. This means that the second term in (4.11) vanishes

LS

at the origin and that, by (4.5), o

also vanishes there. This verifies the first

formula in the lemma, and the argument for the second is similar. The proof is complete.
We do not reproduce the details of the computation of the coefficients in (3.1),

but only record the landmarks as a guide to the reader. It follows from (1.6) that

at the origin

2 B
o o - = o5 .
(4.12) d N(wl,wz) Z(A uluz + A(ulv2 vluz)} 5

*
The eigenfunctions of L and L at the double eigenvalue are given by

()Dul 9Du2
wl(ﬁ) = sin k& wz(ﬁ) = gin(k + 1)§
! 5 Dul -l = DUZ
(4.13)
* X A Du2 * : 1 * Dul
wl(f.) = gin k€ wz(é) = flsln(k + 1) ’
Du2 Dul Il
where
(] - +D (g =1
o fd = e'u‘l' - 2 ¥ puluzte - 12
e e Rt e

is a correction factor required by the normalization (4.6). The reader will note that

if k is odd, then v, in (4.13) is even with respect to the symmetry (1.13). Suppose
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that the two wave numbers at the double eigenvalue are % and £ + 1. If ¢ is odd,

we shall use (4.13) with k = #; if £ is even, we shall use (4.13) with k = =(7 + 1).

By this ruse we can always arrange that the smaller wave number (in the algebraic

sense) at the double eigenvalue is odd. In this way we may observe the parity conven-

tion introduced above and still avoid carrying two sets of formulas for the eigenfunctions.
On substitution of (4.9), (4.12), and (4.13) into the formulas of Lemma 4.1, one

finds after appropriate manipulation, the following formulas for the coefficients in (3.1).

¥y Oy
(4.15a) B fee =2 o
1 vy 1+ Du2 1
u Du
2 2
(4.15b) L R il
2
¥y 1+ Dul 2
Du1 Du2
[ = o
(4.15¢) R e rTh it
1 2
(4.154) b =2 6D
. 3 T 2 PR
m
(4.15e) b, = f, 3 éDu

Here we have used the notation

n
1, = 6AB [ sin’kE ag
: 0

n
1, = 0AB [ sin kg sin®(k + 1) af .
0

Note that I 12 have the same sign as k.

1'
According to the results of [3] quoted in 53 of the present paper, the qualitative
type of the bifurcation diagram associated tc (3.1) can change only if one of the

following equations is satisfied.

(a) Ly 0 (b) a, = 0

(c) a, = 0 (d) bla3 = bza1

(4.16)

Let us consider the simplest of these equations, (4.16c). On multiplying (4.15c) by
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tx » D“A)(1 + U“z; and dividing by a non-zero factor we may rewrite (4.16c) as
2
I - D u, =0 .,
s 2
i " -2 2 : ) 2
We may combine the definitions of 1 to show that A" =D upo, from which it follows

that (4.16¢) is satisfied if and only if A = 1. The reader will note that this line
appears as one of the dividing curves in Figure 2.1, both cases (a) and (b).

Consideration of equations (4.l6a) and (4.16b) is similar. First invoke (4.15)
to show that these equations are satisfied if and only if

(4.17) (a) Du2 = 1 (b) Dul = 1

respectively, and then use the definitions of &1 to express (4.17) in terms of the
parameters A and D. If k is positive, the result is that (4.16a or b) is satisfied

if and only if

>
A
-

(a1 b= G~02%
(4.18) . 2 E
(b) D= (A ~-1)", A>1
respectively; if k is negative, the formula D = (A - 1)2 remains valid but the
inequalities in (4.18) are reversed. The reader will again note that the parabola
D= (A - L)2 occurs as a dividing curve in Figure 2.1. The remaining, unidentified

dividing curve in the figures is of course associated with (4.16d). Its equation may

be written

f 2 )
(4.19) 26,00 = DPuu) = L+ Dy - DU =0,
where

2
- W (v, 5 I
L " vy (kv D)

but (4.19) does not seem to admit a simple representation as a function of A and D.
In Figure 4.1 we have tabulated the signs of the coefficients (4.15) in the various
regions using the notation (3.5). The type of the bifurcation diagram may be determined

by comparison with Fiqure 3.1.
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§5. Lyapunov-Schmidt calculations for the perturbed problems

It may perhaps give a clearer exposition if we indicate how to compute the unfold-
ing parameters in (3.6) for a general perturbation of the equilibrium equation (1.14),
although for the problem at hand we are able to avoid the most unpleasant aspects of
this calculation. Suppose (1.14) is modified by a perturbation term to read
{S<1) P(w) + eP(w) = 0 .
Let hu' El be defined as in %4 to be the projections relative to the decompositicn
(4.1), this data being computed only for e = 0. We define the reduced equations,

depending on €, as follows. Let W : X ~* R » DL be defined implicitly by

0
(5.2) b:l('b + eP) (x + W(x,c)) =0
and let
5.3) G(x,e) = EO(Q + eP)(x + W(x,e)) .

Translation of these expressions into coordinate notation poses no special difficulties,
although it should be mentioned that, unlike in %4, the function W plays a role here.

It follows from the natural analoque of (4.5) that at the origin

E
1
v

€ 1

%)

* S - i ; e
where L is the generalized inverse of L. Suppose we define coefficients for the

perturbed problem by

G, (x,e) - G, (x,0) =¢fa, + ] B..x, + 8, 1A} + hot ,
1 & i =1 5 i ) i0

where the higher order terms include terms of order £2, ﬁx2, L)z. A straightforward

calculation shows that

*

(5.5a) a, ={(w,,p)

3 2 1
I * 2 -1
5.5b) g, =Cw, ,dp(w,) - d°N(L "E.P,w,)?

ij i J b )

5. 5¢ e B -1
(5.5¢) EiO = (wi, ) ML Elp) =

The only significant difference between these formulas and those of Lemma 4.1 is the
appearance of a second term in the inner products of (5.5b and c¢), and this difference

is a direct consequence of (5.4).
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Let us first compute the unfolding parameters for the perturbation asscciated
to (1.12). It is readily seen that

A

A(E) = A, - —59 Ein - € 4 07) .

Note that A appears only in the first equation of (1.1), and there only additively.

(Remark: In the passage to (1.4) we still linearize about a constant function,

namely X =A,, Y = B/AO.) Thus in the notation of (5.1) we should define
1 1
(5.6) B ow == (e = E) ’
2 0
0
a perturbation which is independent of w. We compute from (5.5a) that a, = 0, as
required by symmetry, and that
ZAO
. = - — + .
(5.7) al k3 (1 DUZ)

The computation of the first order terms Bij would be rather tedious because of the
presence of L-l in the relevant formulas. However, we recall from %3 that the
zeroth order coefficient o in (3.6) dominates the first order coefficient g, provided
they are of the same order, which is the case here, since (5.7) shows that a is non-
vanishing. Thus the effect of the perturbation (5.6) is determined by the sign of
(negative) and the sign of the coefficients in Figure 4.1. The reader may consult [3]
to check the validity of the diagrams of Figure 2.4.

The perturbation associated to changes in the diffusion coefficient D admits the

representation
(5.8) Pw = — ]

which depends linearly on w. We could easily substitute (5.8) into (5.5) and evaluate
the resulting expressions ~ this perturbation differs from the preceding one in that

here P vanishes at the origin, eliminating the troublesome terms with L‘l. However,
there is a direct way to assess the effect of (5.8), which moreover sheds some insight

on the problem. This perturbation splits apart the double eigenvalue but does not
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affect the existence of the trivial solution. We m:y see from (3.6) that there is

essentially only one way to do tnis, namely to change £ but to keep a equal to zero.

Thus to describe the perturbed diagram we need only know which mode bifurcates from
the trivial solution first, and we can decide this by an independent argument.

Let us recall (1.9), the foimula for the bifurcation point of the mode with wave

number ¢ from the trivial solution
2 2
(5.9) sﬂ=1+'3d--¢mz+—"—2.
g aD%
5 2 2
Chserve that we may write (5.9) as a function of ¢ real variable D&, say B, = f(D&L7).

By hypothesis

min{f(Dlz): g = 1,203 s )
)

is assumed at two distinct integers k and k + 1, as indicated in Figure 5.1. It
may be seen by inspection that increasing D lowers Bk and raises Bk+1' In other
words, increasing D makes the mode with smaller wave number (in absolute value)
bifurcate first. This is the behavior portrayed in Figure 2.2. To facilitate the
reader's checking this statement, we mention that the solution points of the mode

with odd wave number are located in the plane of symmetry of the bifurcation diagram,

while those with even wave number occur in symmetric pairs.
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§6. On the relation between the Lyapunov-Schmidt and center manifold reductions

The Lyapunov-Schmidt reduction enumerates all rest points of (1.4) but provides
no information about the dynamical behavior of this equation. 1In this respect reduc-
tion of (1.4) via the center manifold theorem is preferable, although somewhat less
straightforward. We begin this section with a brief review of the properties of the
center manifcld, referring to [4] or [8] for details not provided below. We continue
to use the notation introduced in §4 for the Lyapunov~-Schmidt reduction.

The center manifold M is a finite dimensional submanifold of X parametrized
by x € XO. More precisely

(6.1) M= {x +VIx) : x¢€ XO close to zero}

where V : XO == Dl satisfies
(6.2) (El =-qVv E0)¢(x +V(x)) =0 .

The reduced mapping H : XO =P XO in the center manifold context is defined by

(6.3) H(x) = Eo¢(x + Vix)) .
Thus {x + V(x) : H(x) = 0} provides an alternative enumeration of the solutions of
(1.14). At the same time, however, the trajectories of (1.4) tend to trajectories of

the ordinary differential equation
(6.4) = = H(x)

in the following sense. Let U be an appropriately small neighborhood of zero in X,
let w(t) be a solution of (1.4) such that w(t) e U for O < t < T, and let

5(t) = ||Elw(t) - V(Eow(t))“ "

the distance between w(t) and its projection into M. Then

§(t) < Ce-et/z

§(0)
for 0 < t <T, where ¢ is defined by (4.2). The constant C depends only on U in
the above data. Unfortunately this result does not state in general to what extent

the projection x(t) = Eow(t) is approximated by a solution of (6.4), but if 6(0) =0
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(i.e., if w(0) € M), then x(t) is actually a solution of (6.4). Moreover if S C XO
is an attracting set for (6.4), then {x + V(x) : x € S} is attracting for (1.4).
Equation (6.2) expresses the condition that the flow direction &(w) be tangent
to M when we€ M. To see this let us define a smooth mapping f : X - Xl by
f(w) = Elw = V(Eow) .

so that M = f-l(O). We may write the condition of tangency as
d
ac f(w(t)) =0

Since M 1is contained in D, g% is well defined for w € M. Application of the chain
rule leads to (6.2).

In one sense (6.2) is a small perturbation of (4.3); namely, since dV, ¢, and
EO * d® all vanish at the origin the perturbing term may be expected to be small near
zero. On the other hand the new term in (6.2) involves derivatives of V, which makes
an existence proof for (6.2) by a direct perturbation argument problematic. Indeed
this existence question is discussed in [4] in terms of the non-linear semigroup of
transformations generated by ¢®. Moreover because of the singular nature of this
perturbation, (6.2) does not necessarily admit Cm solutions. Although there are Ck
solutions for arbitrarily large k, the size of the domain of existence decreases as k
increases. However, the fact that dv, ¢, and EO * d® all vanish at the origin does
have the following consequence: in computing derivatives of V at the origin from
(6.2), the second term will always contribute to lower order than the first. Thus
for example

2%y

o L
(6.5) 5;:3;; = =L “d 0(ei,ej)

where L1 : Xl > Dl is a pseudo-inverse and {ei} is a basis for XO; the same
formula holds for azw/axiaxj.
There is a minor technical issue to be addressed before the results of [4) are

formally applicable. We must modify (1.4) outside of a neighborhood of zero in order

to verify the hypotheses of [4]. Let x be a Cm function with compact support on
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the finite dimensional space X X I  near zero. We modify (1.4) to read
w
> = Liw) + x (E wIN(w) ,

50 that the equation 18 linear when E W is large. It is then a simple matter to
verify the estimates needed in [4] to construct the center manifold. For this verifica-
tion the reader should note the following fact: N(w) vanishes to second order, so
by restricting the suprort of y we may arrange that xN and its first derivatives
are as small as may be necessary. Also if ¢ depends smoothly on a finite number of
parameters, it is shown in {4] that the center manifold depends Ck-smoothly on those
parameters,

The fact that the center manifold is only finitely differentiable would lead to

certain technical complications if we attempted to apply the center manifold theorem

lirectly. The following lemma provides a relation between the center manifold and the

Lyapunov=-Schmidt reductions that may be exploited to avoid these complications. The
matrix ”x in the lemma depends on the parameters B, A, Dj in the problem but we

do not indicate this dependence explicitly.

‘ k ‘ :
Lemma 6.1: There exists a € matrix-valued function o such that the reduced

mappings G and H of formulas (4.4) and (6.3) are related by
(6.6) Hix) = o * G(x).
X

3 . } 2
Moreover o  1is invertible and o I+ 0(0%)-

Proof: As a technical device we introduce additional parameters into the arguments
of G and H.

Let us define an extended function & : D x XO + X by

Bw,y) = b(w) +y .

We redefine all the functions above to include these extra parameters, indicating the

change with a twiddle. Thus for example V : XO x XO o Xl is defined by

(6.7) (E1 v Eglolx + Vix,y)) - dV -y =0,

where we have used the relation Ely = 0 to discard a term.

It turns out that i

(6.8) 6(x,y) =G(x) +y .




It is clear from this equation that

(6.9) {(x,y) : G(x,y) = 0}

1s a smooth submanifold of XO X XO' which is the reason for introducing the additional
parameters.

The fundamental observation in this proof is that G(x,y) = 0 if and only if
g(x,y) = 0 - both reductions yield all rest points of the equation. Therefore each
component of H(x,y) vanishes on the smooth manifold (6.9), so by Taylor's theorem
each such component may be written as a linear combination (with variable coefficients)
of the functions defining (6.9), namely the components of G itself. 1In other words

we have

(6.10) Hix,y) = oxyé(x,y)

for some matrix-valued function o. We obtain (6.6) on restricting (6.10) to y = O.
The proof that Ux =71 + 0(x2) is based on the computation of various derivatives of
(6.10) indicated below. Given this, it follows that 9y is invertible for small x.

The derivatives we shall need first are

~ 2..
3G = 9°G
(6.11) s w () AL GEEE T e ()
Bxi y Bxiayj

for x = y = 0. The last two relations are obvious, in view of (6.8), and the first
follows from (4.4) on observing that

(6.12) E < db=0.

We claim that H satisfies the same relations (6.11). Now

(6.13) Hix,y) = E0(x + Vix,y)) +y .

The first two relations in (6.11) follow immediately from (6.13) by differentiation,

if (6.12) is recalled. As to the third relation in (6.11), we have

2» - ~
3 H 2 v v

(6.14) R W A WG, P e ce— ’
Bxiayj 0 i axj ayj

again making use of (6.12) to drop a term. We argue that Bﬁ/ayj = 0 as follows.

Differentiate (6.7) with respect to Xy and evaluate at x = y = 0. This yields simply




av
(6.15) Hl .4 * e 0 ;
i

the terms involving dV - E_ * % and 4V * y do not contribute to (6.15) because of

¥
(6.12) and because y = 0, respectively. But E. - db = L is one-to-one on H,.
the space to which V belongs, so 'er/?ixi = (. Similarly differentiation of (6.7)
with respect to yj leads to the conclusion bV/Byj = 0; in this case (6.15) may be
used to drop the last term of (6.7). This proves the claim above.

On differentiating (6.10) with respect to y and evaluating at x =y = 0 we
find that

dyd - nxy - dé '

where we have discarded a term containing G(0,0), which vanishes. Tt follows from
(6.11) that ”xy =1 when x =y = 0. Taking mixed second derivatives of (6.10) yields

the relation

30

0= T * dG ;
p =

here we have used (6.11) to discard one term on the left and three on the right. There~
fore ?m/?)xi = 0 at the origin, and the proof is complete.
Of course when the center manifold reduction is implemented for (1.4) in the

coordinates on X” introduced in 54, the reduced mapping H will possess the symmetry

(3.2) and the matrix ”x of Lemma 6.1 will satisfy (3.4).
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§7. Stability of the bifurcating solutions

The goal of the present section is to verify the stability assignments made in
drawing the bifurcation diagrams of §2. We do this by ad hoc arguments which depend
strongly on the symmetry (1.13).

The bifurcation diagram
(7<%) {(x,)) : H(x,A\) = 0}
enumerates the equilibrium solutions of (1.4). Here H 1is the reduced mapping on the
center manifold, as defined by (6.3). 1In the discussion below we suppress the
dependence of H on all external parameters, including the bifurcation parameter ).
According to 6 the stability or instability of any equilibrium solution of (1.4)
enumerated by (7.1) is determined by the stability or instability of the corresponding
rest point of the ordinary differential equation (6.4). However by Lemma 6.1 we may
express H in terms of G, the reduced mapping of the Lyapunov-Schmidt reduction,
and G in turn may be expressed in terms of the universal unfolding (3.6),

7.2 G = F .
( ) Vo g

On combining these observations we see that (6.4) may be written

dx
ac oxrxl’ o plx) .

1f we introduce the change of coordinates x' = p(x), we may compute that

dax'

(7.3) o - TxF(x )
where ;x = dp ° Gx 8 Tx' To summarize, we saw in 3 that the rest points of (1.4)

may be enumerated by the zeros of F; here we see that the stability ptopertiés of
these rest points may also be obtained from F through analysis of (7.3).

The stability or instability of rest points of (7.3) is of course determined by
the real parts of the eigenvalues of the Jacobian of this equation, which at a rest

point of (7.3) equals ;xdr. But the stability assigmments on the bifurcation diagrams

\
in 2 were made by an inspection of the eigenvalues of dF, or in other words, were .
made according to the stability of :
dax
(7.4) at F(x) . ;
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Thus our task in the present section is to show that the real parts of the eigenvalues
of dF are not changed by multiplication by ;x'

The basic fact we will use in this derivation is that ;x satisfies (3.4), which
follows from the fact that each of the factors in the definition of ;x satisfies (3.4).
Thus in the plane of symmetry (i.e., when y = 0), ;x is diagonal. We claim in fact
that the diagonal entries of ;x are both positive in this plane. It suffices to
look at the origin, since B is non-singular and cannot have a vanishing diagonal

entry. At the origin Gl I and may be ignored. Taking an appropriate mixed deriva-

tive of (7.2) we find that at the origin

3G oF
d[ﬁ)] T Ty T d[é)] 2 7

only one non-zero term results from differentiation on the right since F vanishes to
second order. However it may be seen from (3.6) that d[%g) = I, and d[g%) is a
diagonal matrix with entries bl' b2 given by (4.15), both positive. Thus the diagonal
entries of the product = dp are positive at the origin, and being diagonal, these
matrices commute. This proves the above claim. In the following we shall omit the
bar in ;x' as we have no further occasion to refer to the individual factors in this
matriz.

If the parameters ¢ and n in (3.6) have the same sign, we claim that (7.3)

and (7.4) admit a common Lyapunov function, and hence have the same stability properties.

The Lyapunov function is

3 2
)+ 8
(7.5) P(x,y) = %; + nxy2 + 2 %; + 257;~—l-y2 + ax ,

where ¢' = ¢ + Y. We suppose that Y is small so that c¢' and n also have the

same sign. To check that (7.5) is a Lyapunov function for (7.4), we compute that

Z 2
(7.6) (F, grad ¢) = (x2 + ny2 + Ax + rx)2 + E? e'sy + (X + 8Yy) .
Thus :
2
(F, grad ¢) > e|F|
where ¢ = min(l, 2n/c'), 8o ¢ does indeed increase along the orbits of (7.4). For >
-46-
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(7.3) we must compute (TXF, grad ¢). Let us write T, = %5 + T;. where o is the

value of Tx at the origin. Now [0 is a positive definite, diagonal matrix, and

it is easily seen that
(7.7) (1 F, grad ¢) > 6[1 F|2
ol - x £

for some appropriately small positive 6. On the other hand (T;F, grad ¢) vanishes
to higher order at the origin and may be dominated by (7.7) in a sufficiently small
neighborhood. This proves the above claim and thereby verifies the stability assign-
ments made for the three cases [0' IIIO, IIII. (Incidentally since (7.4) admits a
Lyapunov function, no Hopf bifurcation is possible for these cases. Cf. below.)

It remains to verify the stability assignments for the two cases Il and IIIz.
in which ¢ > 0, n < 0. (The case ¢ < 0, n > 0 does not occur for the problem at
hand.) The bifurcation diagram

{(x,2) : F(x,)) = 0}

consists of two conic sections, one in the plane of symmetry y = 0 and one in the
plane
(7.8) c'x + A+ 8 =0 .
We refer to these as the symmetric and asymmetric solutions respectively. The stability
properties of the symmetric solutions present no problem, because in the plane of
symmetry T and dF are diagonal matrices, the entries of Ty being positive; thus
the eigenvalues of dF and of T dF are real and have the same signs. Our analysis
of the asymmetric solutions is based on the following two facts, proved below. In
these statements large only means close to the boundary of an appropriate neighborhood
of zero.

(7.9) 1In case 1I1 the asymmetric solutions are unstable for sufficiently large

2'
negative ) and stable for sufficiently large positive ).
(7.10) At most one Hopf bifurcation is encountered along the asymmetric branches

as ) is increased from large negative values to large positive values.
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Assuming (7.9) and (7.10) the reader may verify our assignments of stability in
the remaining diagrams of 2 by tracing the various solution branches in from large
values of A, wusing the principle of exchange of stability at bifurcation points. The
essential idea here 1s that the stability assignment along a smooth branch of the
bifurcation diagram can only change at a Hopf bifurcation point, and (7.10) provides
the necessary control to show that there is a unique assignment possible. For example

in Figure 2.4e¢_ no Hopf bifurcation is possible, while in Figure 2.461 a Hopf bifurca-

2
tion is required. It should be mentioned that Fiqure 2.4bl was drawn assuming
1 < ¢ < 2; a slightly different diagram results if ¢ > 2, and we exclude the degenerate

case ¢ = 2 from consideration below.
Both (7.9) and (7.10) follow from the same estimates. On using (7.8) to eliminate
x from the first equation in (3.6) we find that the asymmetric solutions lie on the

conic section

(7.11) g [A_ 2 %]Az il s [ + .ﬁ,] ,
c

Thus det dF = 2c'y2 > 0, so both eigenvalues have real parts of the same sign; the

same statement holds for ey dF, and we may determine the sign by examination of
the trace. A trivial calculation yields

(7.12) tr 1x * dF = 111(2x + ) + 112(cy) + 121(~2y) .

We remind the reader that 112 and 121 are odd functions of vy, so that the last

two terms in (7.12) are 0(y2). 1f we use (7.8) and (7.11) to eliminate x and Yy

from (7.12) we find that
(7.13) tr 1. dF = 1__{(1 - iL)l + hot}
x 11 8"

where terms that are of order Az, a, or f are called higher order, as the first

term in (7.13) will dominate the others if the parameters are appropriately restricted.

-48-

O s I et




e .

In case IIIz, we have 0 < ¢ < 1, so that the coefficient of 2 in (7.13)
is negative. Thus ¢tr s dF is positive for large negative }, indicating eigen-
values with positive real part or instability as claimed in (7.9); and similarly for
large positive . A Hopf bifurcation can occur only if (7.13) vanishes, which will
* *

happen for exactly one value of A, say X . If 2 yields real solutions y in

(7.11) the associated bifurcation diagram will possess a Hopf bifurcation point; other-

w1ise not.
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